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a b s t r a c t 

Background and Objective: Multi-modal medical images, such as magnetic resonance imaging (MRI) and 

positron emission tomography (PET), have been widely used for the diagnosis of brain disorder diseases 

like Alzheimer’s disease (AD) since they can provide various information. PET scans can detect cellular 

changes in organs and tissues earlier than MRI. Unlike MRI, PET data is difficult to acquire due to cost, 

radiation, or other limitations. Moreover, PET data is missing for many subjects in the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) dataset. To solve this problem, a 3D end-to-end generative adversarial 

network (named BPGAN) is proposed to synthesize brain PET from MRI scans, which can be used as a 

potential data completion scheme for multi-modal medical image research. 

Methods: We propose BPGAN, which learns an end-to-end mapping function to transform the input MRI 

scans to their underlying PET scans. First, we design a 3D multiple convolution U-Net (MCU) generator ar- 

chitecture to improve the visual quality of synthetic results while preserving the diverse brain structures 

of different subjects. By further employing a 3D gradient profile (GP) loss and structural similarity index 

measure (SSIM) loss, the synthetic PET scans have higher-similarity to the ground truth. In this study, 

we explore alternative data partitioning ways to study their impact on the performance of the proposed 

method in different medical scenarios. 

Results: We conduct experiments on a publicly available ADNI database. The proposed BPGAN is evalu- 

ated by mean absolute error (MAE), peak-signal-to-noise-ratio (PSNR) and SSIM, superior to other com- 

pared models in these quantitative evaluation metrics. Qualitative evaluations also validate the effective- 

ness of our approach. Additionally, combined with MRI and our synthetic PET scans, the accuracies of 

multi-class AD diagnosis on dataset-A and dataset-B are 85.00% and 56.47%, which have been improved 

by about 1% and 1%, respectively, compared to the stand-alone MRI. 

Conclusions: The experimental results of quantitative measures, qualitative displays, and classification 

evaluation demonstrate that the synthetic PET images by BPGAN are reasonable and high-quality, which 

provide complementary information to improve the performance of AD diagnosis. This work provides a 

valuable reference for multi-modal medical image analysis. 

© 2022 Elsevier B.V. All rights reserved. 
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. Introduction 

As the foundation for precision medicine, medical images have 

eveloped an imperative component of medical research. With 

he development of modern medical imaging equipment, medical 

maging has arisen in various modalities. Multi-modality medical 

mages assist radiologists and clinicians in the early screening and 
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iagnosis of diseases more objectively and accurately by providing 

ntuitive insight into the human body’s interior. Numerous clinical 

esearches [1,2] , such as cancer diagnosis and brain disease diag- 

osis [3–5] , desire high-quality multi-modality medical images to 

chieve an effective diagnosis because multi-modality imaging re- 

ects various pathologies and achieves the purpose of complemen- 

ary advantages. 

Alzheimer’s disease (AD) is a progressive neurodegenerative 

isorder that seriously affects the normal quality of life for older 

eople and their family caregivers. AD early screening, AD di- 

gnosis, and AD intervention are very significant since AD gets 

https://doi.org/10.1016/j.cmpb.2022.106676
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cmpb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cmpb.2022.106676&domain=pdf
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orse over time [6] . With the rapid development of neuroimaging 

echnology, neuroimaging examination has become an indispens- 

ble method for AD diagnosis. Compared with the subjective and 

reliminary neuropsychological examination using multiple scales, 

euroimaging examination can be used not only for the early diag- 

osis of AD but also to distinguish it from other types of demen- 

ia. Recently, various methods based on multi-modal neuroimaging 

ave been proposed to discover biomarkers that contribute to the 

arly diagnosis and prediction of AD [7–9] . In particular, the joint 

nalysis of positron emission tomography (PET) and magnetic res- 

nance imaging (MRI) has been recognized as a useful method for 

he screening and diagnosis of AD [10–12] . It is evident that the 

ombination of PET and MRI scans provides structural and func- 

ional information related to AD, thus improving the effectiveness 

f diagnosis. 

Although PET is a relatively new modality compared to non- 

nvasive MRI, its use is steadily increasing. However, it is not al- 

ays feasible to acquire both MRI and PET scans for each patient 

wing to high expense, lack of PET scanner, radiation exposure, and 

nhanced lifetime cancer risk. Moreover, in the Alzheimer’s Disease 

euroimaging Initiative (ADNI) dataset [13] , there are about twice 

s many subjects with MRI data as subjects with PET data, which 

s missing significantly. One approach is to discard subjects with 

tand-alone MRI and use only modality-complete subjects to train 

iagnostic models. This strategy significantly degrades the number 

f samples and ignores the useful information provided by data- 

issing subjects, thus reducing the performance. A more promis- 

ng strategy is the complement of the missing PET scan, which can 

ake full use of all available subjects. The clinical importance of 

ET images and the difficulty in providing PET images raise a po- 

ential demand for alternative and inexpensive PET images. Recent 

tudies [14–18] attempt to utilize the information from MRI to gen- 

rate PET scans for the multi-modality data complement. Further- 

ore, the value of MRI and synthetic PET scans in improving the 

fficacy of disease diagnosis is further discussed. How to use the 

xisting modal medical images and accurately synthesize the re- 

uired modal images by computer vision technology is a recent 

esearch focus. 

Deep learning has made significant strides in many funda- 

ental computer vision (CV) applications, so the existing multi- 

odality medical images synthesis methods are mainly learning- 

ased. As far as we know, the convolutional neural networks (CNN) 

odel proposed by Cai et al. [19] was the first one to predict the

issing PET data from MRI data, which used a network to learn a 

on-linear relationship between MRI and PET. Gao et al. [20] de- 

igned a RIED-Net to learn the mapping between MRI and PET, 

hich improved the generation performance. There are blurry es- 

imations of generated images in these methods since the L 1 or 

 2 loss function is usually utilized. Recently, image generation, im- 

ge restoration, and so on [21–26] have been widely studied and 

chieved great success, which further promotes the progress of 

edical imaging synthesis [15,16,27] . Pan et al. [28] proposed a 

D conditional generative adversarial network (cGAN) framework 

o model bi-directional mappings between MRI and PET scans for 

D diagnosis. Yaakub et al. [29] designed a 3D generative adver- 

arial network (GAN) based on residual connection learning the 

apping from MRI to PET to support the clinical evaluation of 

atients with focal epilepsy. To achieve accurate lesion detection, 

en et al. [30] presented an architecture for generating PET im- 

ges from CT scans by combining a fully convolutional network 

FCN) and a cGAN. Pan et al. [31] presented a disease-image- 

pecific deep learning approach to encourage the consistency of 

he synthetic neuroimages with their respective real neuroimages. 

in et al. [32] designed a reversible generative adversarial network 

RevGAN) model to generate the PET data. Sikka et al. [33] ex- 

lored a global and local aware method with a multi-path archi- 
2 
ecture that enhanced global structural integrity and local detail 

delity of synthetic PET images. 

Although the above frameworks have been proven to be re- 

arkable, they suffer from some problems for the multi-modality 

edical images synthesis. Firstly, due to the complex spatial struc- 

ure of medical images, there are obvious gaps between synthetic 

nd real images in terms of semantics, resolution, and edge infor- 

ation of human tissues. Secondly, most of the previous works are 

ased on 2D slice-level [20,34,35] , which synthesize images along 

ith one of the axial, coronal, and sagittal planes independently. 

ince MRI and PET scans are three-dimensional, these methods 

ead to discontinuous estimation and spatial information loss, un- 

avorable for medical image synthesis. In addition, the 2D slice- 

evel methods require selecting slices that are utilized as input 

ince not all of them are informative. Some 3D patch-level meth- 

ds [36–38] obtain the entire 3D estimated image by overlapping 

he generated image patches averagely. However, these methods 

re insufficient to learn the global context features among vox- 

ls, which particularly influences the generation capability of net- 

orks. Furthermore, majority of the previous studies [31–33] only 

ocused on discriminating AD from cognitively normal (CN). How- 

ver, mild cognitive impairment (MCI) is considered an interme- 

iate state that is crucial for early diagnosis. Further research is 

eeded for the multi-class classification (AD vs. CN vs. MCI) task. 

o address these issues, a novel 3D end-to-end network BPGAN is 

roposed for brain MRI-to-PET synthesis, providing technical sup- 

ort for the multi-modal missing medical data completion. 

In the proposed work, two data partitioning methods are used 

o build datasets for model training, validation, and testing, which 

valuate insights into the performance of BPGAN in different medi- 

al scenarios. On this basis, a novel architecture BPGAN is designed 

o synthesize PET from MRI by taking full advantage of multiple 

 × 1 × 1 convolutions. The proposed BPGAN can learn the internal 

elation between MRI and PET, generate high-quality PET scans at 

ixel and semantic levels, and reduce the fuzziness of the synthetic 

mages. Moreover, a 3D gradient profile (GP) loss is introduced 

ased on the traditional adversarial loss and pixel-wise loss to re- 

onstruct texture information in PET images. At the same time, the 

tructural similarity index measure (SSIM) loss is added to the to- 

al loss function to preserve the contrast information of generated 

mages. To verify the superiority of our proposed method, three 

valuation metrics, including mean absolute error (MAE), peak- 

ignal-to-noise-ratio (PSNR) and SSIM, are introduced to perform 

he quantitative evaluation. The quantitative results demonstrate 

hat BPGAN can synthesize high-quality PET scans with three op- 

imal metrics. We make a qualitative evaluation of the synthetic 

ET scans, which further proves that PET scans generated by our 

roposed model have a high similarity with ground truth. Further- 

ore, the AD classification results of stand-alone MRI scan, stand- 

lone synthetic PET scan, and combination of MRI and synthetic 

ET images show that MRI-to-PET synthesis is of great significance 

or multi-modal AD diagnosis. 

Overall, the main contributions for this study are as follows. 

1. A novel 3D end-to-end generative adversarial network BPGAN is 

proposed, which can effectively synthesize realistic and diverse 

brain PET scans from the corresponding brain MRI scans. 

2. A hybrid loss combining 3D GP loss, SSIM loss, adversarial loss, 

KL-divergence constraint, and L 1 loss is introduced to supervise 

the training process of brain PET scans synthesis on multiple 

levels. 

3. Two alternative data splitting strategies are explored to study 

the impact on the MRI-to-PET synthesis task and further ana- 

lyze their applicability in different medical scenarios. 

4. The feasibility of using BPGAN as an effective data completion 

method for multi-modal AD diagnosis is further explored. The 



J. Zhang, X. He, L. Qing et al. Computer Methods and Programs in Biomedicine 217 (2022) 106676 

Table 1 

Parameter selection specifications for ADNI medical image data. 

MRI PET 

Image T1-weighted structural MRI, 1.5T, 3D Fluorodeoxyglucose (FDG) PET 

Pre-processed method Gradwarp, B1 non-uniformity, N3 bias field corrected Co-registered, Averaged 

Project phase ADNI1, ADNI2, ADNI-GO ADNI1, ADNI2, ADNI-GO 

Table 2 

Demographics, MMSE, CDR, and CDR-SOB of dataset-A that split by random sampling. 

Split (random sampling) Diagnosis Scan-pairs Age MMSE CDR CDR-SOB 

Training CN 418 75.76(6.18) 29.00(1.87) 0.02(0.16) 0.10(0.37) 

MCI 693 73.64(7.72) 27.48(2.74) 0.48(0.15) 1.57(1.07) 

AD 275 74.66(7.38) 21.91(4.17) 0.89(0.40) 5.27(2.42) 

Validation CN 15 76.83(6.13) 29.06(1.00) 0.03(0.12) 0.10(0.20) 

MCI 22 74.29(6.14) 27.86(1.63) 0.48(0.10) 1.52(0.95) 

AD 9 76.00(5.59) 22.33(3.68) 0.83(0.47) 4.94(2.80) 

Testing CN 98 76.97(6.60) 29.03(1.22) 0.02(0.19) 0.12(0.43) 

MCI 141 73.54(7.89) 27.60(3.11) 0.50(0.10) 1.58(0.99) 

AD 61 75.85(6.99) 21.21(3.93) 0.90(0.42) 5.42(2.40) 

Values are reported in terms of mean(standard deviation). 
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1 http://www.clinica.run 
2 www.aramislab.fr 
3 https://fsl.fmrib.ox.ac.uk/fsl 
4 https://www.fil.ion.ucl.ac.uk/spm 
classification results indicate that the high-quality PET images 

generated by BPGAN contain disease information, which is ben- 

eficial to AD diagnosis. 

This paper proceeds as follows. Section 2 introduces a de- 

ailed description of our approach. Experimental results are de- 

icted in Section 3 , which are discussed in the following Section 4 .

ection 5 gives a conclusion. 

. Methods 

.1. Data acquisition and preprocessing 

.1.1. Data acquisition 

AD is a neurological and irreversible brain disease. The largest 

ublicly available neuroimaging dataset for the AD diagnosis is 

DNI [13] , which comprises T1-weighted structural MRI, Fluo- 

odeoxyglucose (FDG) PET imaging, and other imaging of different 

odalities. 

In total, 1732 image pairs from 873 subjects from the ADNI 

atabase are used for our experiments, and their details are shown 

n Table 1 . The data for each subject includes a baseline scan and

ome follow-up scans at multiple time points after the baseline, 

ith each scan having a subject ID and a session ID. Therefore, 

ach subject has more than one image pair, and each image pair of 

ne subject has the same subject ID and different session ID. The 

mage pairs from subjects are in three categories: cognitively nor- 

al (CN), mild cognitive impairment (MCI), and AD. Each subject 

as images in two modalities (MRI and PET). This paper explores 

wo alternative ways of splitting data into training, validation and 

esting sets to investigate the performance of the proposed model 

nder various medical scenarios. 

Firstly, we consider randomly splitting the data from the scans, 

gnoring the subject ID, as random sampling. This split method 

voids the situation where the model overfits the individual brain 

tructure and ignores critical differences in feature representa- 

ion among the different disease stages. The demographics, mini- 

ental state examination (MMSE), global clinical dementia rating 

CDR), and clinical dementia rating scale sum of boxes (CDR-SOB) 

cores of the dataset, which is named dataset-A, are summarized 

n Table 2 . MMSE, CDR and CDR-SOB are the clinical screening 

nstruments to assess the overall cognitive function, mainly used 

o ensure that scale distribution between training, validation, and 

esting sets are not significantly different. 
3 
Secondly, we refer to producing the splits by subject ID, named 

ataset-B. All available scan-pairs from one subject are allocated 

o only either training or validation or testing set. This strategy is 

ore close to the real time clinical scenario. In practice, new sub- 

ects usually have no scan records. Therefore, the data split strat- 

gy by subject ID needs to be studied, where each subject in the 

esting set and validation set has no data in the training set. This 

trategy is suitable for patients with no recorded PET scans. Sum- 

ary of the participant demographics, MMSE, CDR, and CDR-SOB 

cores are demonstrated in Table 3 . 

.1.2. Data preprocessing 

For data preprocessing, we utilize the Clinica software plat- 

orm 

1 [39] developed by ARAMIS Lab 2 for data preprocessing, 

hich supports FSL 3 , Statistical Parametric Mapping 4 (SPM), and 

reeSurfer [40] . First, two modal scans, including MRI and PET, are 

egistered into a Dartel template [41] . Then, the two modalities are 

patially aligned to the same standardized Montreal Neurological 

nstitute (MNI) coordinate space to align rigidly with each other, as 

llustrated in Fig. 1 . The inputs of Clinica are the ADNI scans con- 

erted to BIDS format. To prevent the interference of redundant in- 

ormation, non-brain tissues are removed from MRI scans and PET 

cans. Moreover, we resize MRI and PET scans to 128 × 128 × 128 

oxels to reduce computational cost. The pixel values range of the 

mages is further normalized to [-1, 1] to avoid the problem of gra- 

ients exploding and convergence. 

.2. Overview of proposed method 

The goal of PET synthesis from MRI is to generate the per- 

eptually realistic PET scan as close as possible to the real PET 

can. Inspired by BicycleGAN [25] , we follow the adversarial train- 

ng strategy and propose a novel 3D end-to-end network BPGAN 

o improve the quality of synthesized PET images. BPGAN mod- 

ls a mapping function G (x ) , as represented in Fig. 2 . Assuming

 dataset where a subject S is consists of two modalities images 

 x, y } is given. In the training set, subjects have the paired brain

RI scans x and PET scans y as { x i , y i } N i =1 , while the testing set is 

omposed of subjects with only MRI scans x . The training set con- 

ains MRI-PET pairs from subjects in all categories (e.g., AD, CN, 

http://www.clinica.run
http://www.aramislab.fr
https://fsl.fmrib.ox.ac.uk/fsl
https://www.fil.ion.ucl.ac.uk/spm


J. Zhang, X. He, L. Qing et al. Computer Methods and Programs in Biomedicine 217 (2022) 106676 

Table 3 

Demographics, MMSE, CDR, and CDR-SOB of dataset-B that split by subject ID. 

Split (subject ID) Diagnosis Subjects Scan-pairs Age MMSE CDR CDR-SOB 

Training CN 184 411 76.01(6.37) 28.98(1.88) 0.02(0.17) 0.10(0.40) 

MCI 347 673 73.53(7.84) 27.51(2.75) 0.49(0.13) 1.58(1.06) 

AD 146 292 75.24(7.12) 21.72(4.20) 0.90(0.42) 5.30(2.43) 

Validation CN 8 18 76.19(4.03) 29.27(0.80) 0.00(0.00) 0.11(0.21) 

MCI 17 29 72.05(5.36) 27.24(1.92) 0.43(0.28) 1.84(1.06) 

AD 6 9 72.11(4.42) 20.44(4.24) 0.83(0.24) 5.06(2.07) 

Testing CN 53 102 75.98(6.22) 29.05(1.22) 0.02(0.16) 0.09(0.32) 

MCI 82 154 74.48(7.49) 27.52(3.09) 0.48(0.17) 1.49(0.99) 

AD 30 44 73.07(8.49) 22.46(3.35) 0.84(0.35) 5.27(2.45) 

Values are reported in terms of mean(standard deviation). 

Fig. 1. The illustration of data preprocessing. 

Fig. 2. Illustration of MRI-to-PET synthesis. The left column is input MRI. The synthesized PET scans by G are compared to the ground truth PET scans. 
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nd MCI), so there are no unknown diseases in the inference stage. 

ur goal is to learn the complex non-linear mapping between x 

nd y in a supervised manner to achieve the multi-modality miss- 

ng data completion. G (x ) can generate the visually appealing PET 

cans ˆ y while possessing the diversity. It can be formulated as 

q. 1 : 

ˆ 
 = G (x, θ ) (1) 

The network’s parameters θ are optimized by minimizing a par- 

icularly proposed objective function. 

.3. Proposed framework 

To produce high-quality and diverse results, we introduce bi- 

ective consistency [25] between the latent encoding and synthetic 

ET scans. Latent vectors and the spatial and semantic informa- 
4 
ion from PET images are jointly utilized for MRI-to-PET synthe- 

is through conditional variational autoencoder GAN (cVAE-GAN) 

42,43] and conditional latent regressor GAN (cLR-GAN) [44,45] . 

he proposed BPGAN architecture is shown in Fig. 3 , whose learn- 

ng process is as follows. 

- The goal of cVAE-GAN is to achieve y → z → ˆ y . The generator

G uses both the distribution Q(z | y ) and the input MRI scan 

x to synthesize the desired PET scan ˆ y . The ground truth PET 

scan y is directly encoded to the latent code z by an encoder 

E to make z useful. This model is briefly regarded as the re- 

construction of the real PET scan y . With the latent encode 

Q(z | y ) as a prior condition, the training process is guided in 

pairs along with the input MRI scan x , desiring the synthetic 

PET scan ˆ y close to the real PET scan y . This process resembles 

an autoencoder [46] . Extending it to a conditional scenario, the 
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Fig. 3. BPGAN framework. 
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distribution Q(z | y ) of latent code z is a Gaussian assumption 

[25] , Q(z | y ) � E(y ) . During model learning, sampling z ∼ E(y )

is permitted to be direct back-propagation [43] with our pro- 

posed objective function. 

- In cLR-GAN, the generator G uses the latent code z to map input 

MRI scan x into the synthetic PET scan ˆ y , where the generated 

sample ˆ y is encoded by E to produce a latent vector. This op- 

eration can be represented as z → ˆ y → ˆ z . The noise vector N(z) 

starts from a randomly drawn code z and attempts to recon- 

struct it with ˆ z = E(G (x, z)) . Since the noise vector is randomly

sampled, the synthetic PET scan ˆ y is required to be realistic but 

not necessarily close to the real PET scan y . Note that ˆ z gener- 

ated by encoder E is a point estimate rather than a distribution 

[25] . During the training process, G , D and E are continuously 

optimized with our objective function. 

- BPGAN combines constraints in both directions during the 

training process [25] , aiming to make full use of both cycles. 

In terms of network architecture, our proposed BPGAN consists 

f three components, which are illustrated in Fig. 4 : (1) gener- 

tor, (2) discriminator, and (3) encoder. First, we follow the in- 

ertible connection between synthetic output and latent code [25] , 

hich facilitates generator G to produce realistic and diverse PET 

cans. Then we design an advanced multiple convolution U-Net 

MCU) generator that associates U-Net with multiple 1 × 1 × 1 con- 

olution sequences to synthesize PET scans with detailed infor- 

ation from the relevant brain MRI scans. It should be empha- 

ized that 3D convolution layers are utilized to optimally capture 

igh-level semantic information, model the spatial structure fea- 

ures of PET scans, and eliminate the slice discontinuity resulting 

rom 2D networks. Moreover, two patch-level discriminators at dif- 

erent scales are modeled with the adversarial learning strategy. 

inally, MCU is optimized by incorporating 3D GP loss and SSIM 

oss into the objective function to improve the visual quality and 

ixel-level quality of the generated PET scans. The details of the 

rchitecture and the extensive loss function are demonstrated in 

ubsections 2.3 and 2.4 , respectively. 
5 
.3.1. Generator 

MRI and PET scans are different representations of the same 

nderlying information, and the correspondence between them is 

earned through a generator. A generator based on the ordinary 

NN architecture may lose low-level spatial information with the 

eeper network, which is not beneficial to the synthesis of PET 

cans. U-Net [47] addresses the issue effectively by adopting con- 

raction paths to realize the fusion of different levels of features. 

icycleGAN [25] and Pix2Pix [23] models based on U-Net [47] per- 

orm well in the natural image generation task. Meanwhile, U-Net 

rchitecture [47] is feasible for medical pixel-level prediction tasks 

28,36,48] . However, the original U-Net [47] has limitations. The 

patial resolution of medical images is usually not high. With the 

ncrease of the number of down-sampling, the resolution of im- 

ges gradually decreases, and increasing the network depth at the 

ottom of U-Net is limited. Because MRI and PET are both three- 

imensional, increasing network depth at the top of U-Net results 

n a large number of parameters and computation time. To balance 

he depth of the network and the amount of computation, MCU is 

roposed to capture deeper features without adding a lot of extra 

omplexity. 

The main idea of MCU generator diagrammed in Fig. 4 is to 

ombine the advantages of U-Net [47] and multiple convolution 

equence. MCU has a multiple convolution module, 7 convolution 

ayers, and 7 transposed convolution layers. All convolution opera- 

ions except the multiple convolution module are down-sampling 

r up-sampling by a factor of 2 with the filter kernel size of 

 × 4 × 4 . It is noticed that the convolution layer (or deconvolution 

ayer) is followed by instance normalization (IN) rather than Batch 

ormalization (BN). And the Leaky Rectified Linear Unit (Leaky 

eLU) with a slope of 0.2 is selected as the activation function. In 

he last layer, the Tanh function is utilized without the normaliza- 

ion layer. 

The proposed multiple convolution module is inserted to the 

ottom of U-Net to achieve high-level semantic feature extraction 

ithout significantly adding the additional time cost and compu- 

ational cost, as shown in Fig. 5 . Firstly, 1 × 1 × 1 convolution is 
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Fig. 4. Overview of the proposed method. 

Fig. 5. Multiple convolution module. The � denotes matrix addition and c represents the channel number. 
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sed as a dimension reduction module to remove computational 

ottlenecks. Multiple 1 × 1 × 1 convolutions are then infused in 

he cascade and parallel mode. In cascade mode, due to the grad- 

al increase of the number of convolution layers, it can increase 

he network depth and effectively improve the learning capacity 

f the network [49] . In parallel mode, the outputs of three cascade 

ranches that accept the same input are added. More diverse infor- 

ation and multi-level feature maps are captured from the image. 
6 
oreover, the projection created by 1 × 1 × 1 convolution directly 

ncreases the channel number of feature maps to the same num- 

er as input feature maps. And it allows complex and learnable 

nteractions of cross-channel information. Finally, the original fea- 

ure maps are added directly with other features, like the shortcut 

echanism [50] , to prevent the gradient from vanishing as follows: 

 

′ = X + T ( C 1 (T (X )) + C 2 (T (X )) + C 3 (T (X )) ) (2) 
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here C represents the cascade operation and T is the transfor- 

ation of cross-channel information. X and X ′ are the input and 

utput feature maps, respectively. 

.3.2. Discriminator 

Discriminator D is a classic CNN architecture that contains 3D 

onvolution operation, 3D normalization operation, Leaky ReLU, 

nd 3D max-pooling operation. For four convolution layers with 

he filter kernel size of 4 × 4 × 4 in D , the channels are 32, 64, 128

nd 256, respectively. We employ two patch-level discriminators at 

ifferent scales [25] to determine whether each 64 × 64 × 64 and 

28 × 128 × 128 patch of input scan is real or not, taking either a 

eal PET scan or a synthesized one as input. 

.3.3. Encoder 

Resnet [50] architecture is introduced to encode the images bet- 

er instead of plain CNN in the encoder E . E consists of multiple

D convolutional layers followed by 3D normalization and ReLU, 

D average-pooling operation, and several residual connections. It 

eeds to be emphasized that 3D IN is adopted instead of 3D BN 

ecause 3D IN ensures the independence of each image instance 

nd is more suitable for the generation task. 

.4. Proposed total loss function 

Success in MRI-to-PET synthesis requires semantic reasoning 

nd shape translation. Specifically, although the synthetic PET and 

RI scans are quite different in appearance, they should be sim- 

lar at the semantic level. To generate high-quality and realistic 

ET scans, an objective function is designed to optimize the pro- 

osed model, including five types of components: adversarial loss, 

L-divergence constraint (KL loss), L 1 loss, 3D GP loss, and SSIM 

oss. 

The meaning of adversarial loss is to match the distribution of 

he synthesized PET image ˆ y with that of the real PET image y . 

 

1 
GAN 

and L 

2 
GAN 

, which are the adversarial losses of cVAE-GAN and 

LR-GAN [25] , are written as follows: 

 

1 
GAN (G, D, E) = E x , y ∼p(x , y ) [ log (D (x , y ))] 

+ E x , y ∼p(x , y ) , z ∼E(y ) [ log (1 − D (x , G (x , z )))] (3) 

 

2 
GAN (G, D ) = E x , y ∼p(x , y ) [ log (D (x , y ))] 

+ E x ∼p(x ) , z ∼p(z ) [ log (1 − D (x , G (x , z )))] (4) 

L 1 loss encourages the generated PET scans to match the real 

ET scans at the pixel level and stabilizes the training. We utilize 

 

1 
1 and L 

2 
1 as follows: 

 

1 
1 (G ) = E x , y ∼p(x , y ) , z ∼E(y ) ‖ y − G (x , z ) ‖ 1 (5)

 

2 
1 (G, E) = E x ∼p(x ) , z ∼p(z ) ‖ z − E(G (x , z )) ‖ 1 (6)

To ensure the encoded vector from the real PET z ∼ E(y ) has a 

imilar distribution with the latent vector sampled from a Gaussian 

istribution, KL loss is enforced following the BicycleGAN [25] to 

inimize their difference as follows: 

 KL (E) = E y ∼p(y ) [ D KL (E(y ) ‖N (0 , I)) ] (7) 

here D KL (p‖ q ) = − ∫ 
p(z) log p(z) 

q (z) 
dz. 

It is essential for the PET image synthesis task to preserve high- 

requency details while transferring as many low-frequency con- 

ents as possible. Unfortunately, although the reconstruction loss 

an capture the overall structure, it is ineffective in reconstructing 

igh-frequency contents and low-frequency details in the synthetic 

ET image. To address this issue, we introduce some loss functions. 

First, a 3D Gradient Profile (GP) loss is proposed to generate 

ET images with better structural and perceptual contents while 
7 
eing more informative, which is an extension of 2D GP loss [51] . 

he distances in shape between the real and synthetic PET images 

re approximated by considering the gradient of image patches on 

he sagittal, coronal, and transverse planes. We regard the pixels 

n the horizontal and vertical directions of image patches as a vec- 

or and calculate the Euclidean distance between the correspond- 

ng vectors in real and synthetic PET image patches as the similar- 

ty. 3D GP loss considers the spatial profile of a PET image patch 

s a vector. The similarity between them is measured over each 

mage patch along the three planes in an induced vector space as: 

 D = 

1 

D 

∑ 

D 

(
1 

H 

trace ( G (x ; θ ) D · y τD ) + 

1 

W 

trace ( G (x ; θ ) τD · y D ) 

)
(8) 

 H = 

1 

H 

∑ 

H 

(
1 

D 

trace ( G (x ; θ ) H · y τH ) + 

1 

W 

trace ( G (x ; θ ) τH · y H ) 

)
(9) 

 W 

= 

1 

W 

∑ 

W 

(
1 

H 

trace ( G (x ; θ ) W 

· y τW 

) + 

1 

D 

trace ( G (x ; θ ) τW 

· y W 

) 

)
(10) 

here (·) τ represents transpose and trace (·) is the sum of the di- 

gonal elements in a square matrix. D , H and W are respectively 

he depth, height and width of the PET scan. The first and second 

erms compute similarity among vertical and horizontal profiles of 

n image patch pair { x, y } of size D × W in Eq. 8 , respectively. 

The 3D GP loss is computed in the image gradient space with 

q. 8, Eq. 9 , and Eq. 10 to drive the content and shape of PET im-

ges along with sagittal, coronal, and transverse planes, which is 

ependent on edge information, like the following: 

 (x, y | G (x ; θ ) , y ) = 

1 

3 

( L D + L H + L W 

) (11) 

 GP (x, y ) = L (x, y | ∇G (x ; θ ) , ∇y ) (12)

Second, we integrate SSIM loss into our training loss to 

earn the structural information from three different perspectives: 

rightness, contrast, and structure [52] . It is worth noting that 

SIM needs to take a minus sign as a loss. 

 SSIM 

= − 2 μx μy + C 1 

μ2 
x + μ2 

y + C 1 
· 2 σxy + C 2 

σ 2 
x + σ 2 

y + C 2 
(13) 

here μx , μy and σx , σy are the mean and standard deviations of 

RI x and PET y respectively, σxy is their covariance, C 1 and C 2 are 

sed to avoid dividing by zero. 

As mentioned above, the aggregate objective function proposed 

n this paper can be expressed as Eq. 14 . Our experimental re- 

ults show that the proposed loss components effectively minimize 

he disparity between the distribution of generated images and the 

istribution of real images in the brain MRI-to-PET synthesis task. 

 

∗, E ∗ = arg min G,E max D L 

1 
GAN (G, D, E) + L 

2 
GAN (G, D ) 

+ λ1 L 

1 
1 (G ) + λ2 L 

2 
1 (G, E) 

+ λKL L KL (E) + λGP L GP (G, E) 

+ λSSIM 

L SSIM 

(G, E) 

(14) 

here the hyper-parameters λ1 , λ2 , λKL , λGP , and λSSIM 

is the 

eight of each part, which is to be excavated in the abundant ex- 

eriments. They control the relative importance of individual loss 

erms. 

. Results 

.1. Experimental settings 

The hyper-parameters for the total loss function of the pro- 

osed model are set as the fixed values before training. Abundant 

xperiments demonstrate that when the hyper-parameters are set 

s λ = 10 . 0 , λ = 0 . 5 , λ = 0 . 01 , λ = 1 . 0 , and λ = 0 . 02 , our
1 2 KL SSIM GP 
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Table 4 

Quantitative comparison using different methods on dataset-A test set. 

Methods MAE PSNR SSIM 

FGAN 

∗ [54] 0.0803 29.62 0.6817 

Adversarial U-Net ∗ [55] - 25.13 - 

HGAN 

∗ [18] 0.0757 30.24 0.6945 

GAN 

∗ [56] 0.0690 - 0.7240 

FCN [57] 0.0480 23.46 0.5997 

U-Net [47] 0.0467 23.95 0.6720 

Pix2Pix [23] 0.0400 25.23 0.6844 

BicycleGAN [25] 0.0348 26.19 0.6966 

BPGAN 0.0318 26.92 0.7294 

The symbol ∗ means just as a reference since the selected experimental data and 

data preprocessing processes in these methods are different. 

Table 5 

Quantitative comparison using different methods on dataset-B test set. 

Methods MAE PSNR SSIM 

FCN [57] 0.0516 22.89 0.5838 

U-Net [47] 0.0517 22.92 0.6343 

Pix2Pix [23] 0.0514 22.93 0.6061 

BicycleGAN [25] 0.0409 24.84 0.6503 

BPGAN 0.0396 25.08 0.6646 
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ethod achieves superior performance. Adam [53] optimizer is 

sed with an initial learning rate of 2 × 10 −4 . The training pro- 

ess of all models for PET synthesis in this paper lasts for 230 

pochs with the learning rate linearly decaying to 0 over the last 

0 epochs after maintaining 2 × 10 −4 in the first 200 epochs. The 

atch size is set to 6. Our proposed method is implemented by 

ython with Pytorch framework on a platform with an NVIDIA 

eForce GTX 3090 GPU. 

For AD diagnosis, the classification model is trained with Adam 

53] optimizer with a batch size of 6. The learning rate is set by 

sing a cosine annealing schedule with the initial learning rate 1 ×
0 −4 . We train the model for 150 epochs on an NVIDIA GeForce 

TX 3090 GPU. Data augmentation via Gaussian blurring with σ
niformly chosen from 0 to 1.5 is performed on MRI or PET scans. 

.2. Quantitative evaluation 

To justify the performance of BPGAN, the experimental re- 

ults are compared to state-of-the-art (SOTA) methods. Quantita- 

ive evaluation is done in this work employing three evaluation 

etrics, including MAE, PSNR, and SSIM. MAE and PSNR measure 

bsolute errors between real and synthetic PET scans, and SSIM 

epresents structural similarities. 

MAE is an extensively used metric for the image reconstruction 

roblem. It measures the average absolute difference in pixel val- 

es between a synthetic PET scan and a real PET scan. MAE is de- 

ned as: 

AE (x, y ) = 

∑ n 
i =1 | y i − x i | 

n 

(15) 

here x i and y i represent the intensity value of index i in the real

ET pixels and the synthetic PET pixels, respectively. 

PSNR is an expression for the ratio between the maximum pos- 

ible value and the mean squared error of the synthetic and real 

mage. It is computed as follows: 

SNR (x, y ) = 10 log 10 

max 2 

1 
n 

∑ n 
i =1 ( x i − y i ) 

2 
(16) 

here x i and y i are the intensity values of the real and synthetic 

ET pixels. n is the number of pixels, and max is the maximum 

ossible intensity of image pixels. 

SSIM evaluates the similarities within pixels of the real and 

ynthetic PET images. It attempts to extract structural information, 

here the higher value of SSIM indicates the higher visual quality 

f generated PET images. Let x and y represent the generated PET 

mage patch and the real PET image patch extracted in the same 

patial location, respectively. For pixel i , the SSIM score can be cal- 

ulated as follows: 

SIM (i ) = 

2 μx μy + C 1 

μ2 
x + μ2 

y + C 1 
· 2 σxy + C 2 

σ 2 
x + σ 2 

y + C 2 
(17) 

here μx , σx and σxy are the average of x , the variance of x , and

he co-variance of x and y , respectively. C 1 and C 2 are empirically 

wo constants stabilizing the division with weak denominator. 

The quantitative comparisons are conducted on five net- 

orks: FCN [57] , U-Net [47] , Pix2Pix [23] , BicycleGAN [25] , and

PGAN. As an important variant of the traditional CNN, FCN 

57] drives advances in image translation tasks. Many previous 

orks [30,58] have demonstrated the advantages of using FCN 

tructures for image synthesis. Therefore, a typical 3D FCN is uti- 

ized as the baseline model. As a representative algorithm for the 

edical image segmentation, U-Net [47] is chosen for comparison, 

hich has been done specifically for MRI-to-PET synthesis [59] . Fi- 

ally, Pix2Pix [23] and BicycleGAN [25] , which are the SOTA mod- 

ls in the multi-modal generation task, are compared to prove the 

ffectiveness of the proposed model BPGAN. It is worth noting that 
8 
e have re-implemented these models based on the original pa- 

er or original code. We retain the topology of these models while 

aking some necessary changes, such as changing networks from 

D to 3D to accommodate the PET synthesis task. 

The results on dataset-A and dataset-B in terms of MAE, PSNR, 

nd SSIM metrics are shown in Table 4 and Table 5 . The high

SNR (26.92/25.08) and low MAE (0.0318/0.0396) prove that the 

ET scans generated by our BPGAN have the highest visual quality, 

hile the high SSIM (0.7294/0.6646) indicates BPGAN can synthe- 

ize diverse PET images based on existing MRI scans. Quantitative 

esults suggest that our proposed model can generate plausible and 

iverse PET images, which is superior to other competitive models. 

.3. Qualitative evaluation 

To give an instinctive sense of the visual results of BPGAN 

ompared with other SOTA models, qualitative results are ana- 

yzed by our cooperation with clinical experts Yan Liu and Qingyan 

ai through visualizing cases. The qualitative observations of three 

amples from dataset-A and dataset-B with different disease stages 

re demonstrated in Fig. 6 and Fig. 7 . 

The results clearly show that, from a visual standpoint, the PET 

mages estimated by the proposed method have higher similarity 

ith the real PET images in axial, coronal, and sagittal planes. It 

s proved that BPGAN can achieve better-generated performance 

n the MRI-to-PET synthesis task than others. The results are con- 

rmed by experienced doctors. In the baseline 3D FCN and 3D U- 

et, the synthetic scans deviate significantly from the ground truth 

mages, which have undesirable speckle noise marked with yel- 

ow lines in Fig. 6 and Fig. 7 . The speckle noise could disturb the

lassification accuracy and lead to poor prediction results in the 

omputer-assisted diagnosis method. At the same time, the con- 

rast of PET images estimated by these methods is low. In compar- 

son, the contrast of our generated PET images is improved, and 

here is no speckle spot. Although Pix2Pix [23] and BicycleGAN 

25] can learn the structural changes, there are still contrast and 

tructural detail errors compared to BPGAN, such as the regions 

arked with red circles in Fig. 6 and Fig. 7 . This region is roughly

he temporal lobe, which is marked by us with a discussion with 

he doctors. The temporal lobe is one of the regions highly associ- 

ted with AD/MCI in comparison to other regions. The edge struc- 

ure of the generated image seems to be over-smoothed or fuzzy 
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Fig. 6. Qualitative results of PET images synthesized by five methods with their corresponding ground truth PET and MRI images for 3 subjects on dataset-A - one from 

each group: AD, MCI, and CN in axial (left), coronal (middle), and sagittal (right). 
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ue to the lack of edge information. The edges of brain tissues in 

ET images estimated by BPGAN are more complete, as shown in 

reen boxes in Fig. 6 and Fig. 7 . The green rectangle region is the

rontal and parietal lobe, marked after discussion with clinical ex- 

erts. Studies [60,61] have shown that frontal and parietal lobe hy- 

ometabolism, as noted on PET imaging, is the metabolic abnor- 

ality associated with AD/MCI. It can be shown that the images 

ynthesized by our BPGAN (7th row) are more consistent with the 

round truth (2nd row) than those synthesized by other methods 

3rd-6th rows) in Fig. 6 and Fig. 7 , particularly in terms of the sul-

us width and edge information. Overall, our proposed model can 

enerate diverse results and reflect detailed brain features. Based 

n qualitative analysis and quantitative assessment, we observe 

hat BPGAN is superior to other methods and has potential appli- 

ation in missing-modal medical image completion. 

To study the efficacy of the proposed model, we specially com- 

are the generated PET scans with the real PET scans. The ax- 

al, coronal, and sagittal slices of one synthetic 3D PET sample 

rom dataset-A and dataset-B by various approaches are visual- 

zed in Fig. 8 and Fig. 9 , respectively. Ground truth PET scans 

nd error maps are also illustrated. The pixel value in error maps 

s calculated from the absolute difference between generated PET 

cans and ground truth PET scans, which is further highlighted 

y the pseudo-color processing. We can clearly see that the PET 

cans synthesized by BPGAN have more low-difference regions 

han other methods. Moreover, to make a fair comparison, the 

ean error per pixel in error maps is calculated. In dataset-A and 
9 
ataset-B, the mean error per pixel of our PET images is minimum, 

urther demonstrating the effectiveness of the proposed model. 

.4. Experimental results of AD diagnosis 

To validate the contribution of generated PET scans as com- 

leted medical imaging to multi-modal AD diagnosis, we further 

iscuss the AD classification tasks. The development of Alzheimer’s 

isease includes three stages (CN, MCI, AD), so a multi-class classi- 

cation task (AD vs. CN vs. MCI) and three types of two-class clas- 

ification tasks (AD vs. CN, MCI vs. CN, AD vs. MCI) are discussed in 

his paper. The widely used classification metrics, namely accuracy 

ACC), receiver operator characteristic (ROC) curve and area un- 

er receiver operating characteristic (AUC), are employed for per- 

ormance evaluation in AD diagnosis. The classification accuracies 

f single-modality AD diagnosis and multi-modality AD diagnosis 

re discussed in subsections 3.4.1 and 3.4.2 , respectively. ROC curve 

nd AUC of AD diagnosis are analyzed in subsection 3.4.3 . 

.4.1. Classification accuracy of single-modality AD diagnosis 

In the single-modality AD diagnosis, 3D-Resnet18, a classical 

eural network for solving classification problems, is employed as 

he classifier to evaluate the PET images synthesized by different 

ethods. For a fair comparison, we first train the classifiers based 

n the real PET images in the training set. Then, we evaluate the 

lassification ACC of real PET images and PET images synthesized 

y different comparison models in the testing set, respectively. 
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Fig. 7. Examples of the input MRI scans and their corresponding ground truth PET and estimated PET images from patients on dataset-B with AD, MCI, CN, respectively. 

From left in each subject, estimated PET image in axial plane, coronal plane, and sagittal plane are shown. 
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The performance of real MRI scans, real PET scans, and gener- 

ted PET scans in AD classification tasks are presented in Fig. 10 

nd Fig. 11 . If the synthetic PET scans are close to the correspond- 

ng real PET scans, their prediction for the disease category should 

e the same. We can observe from Fig. 10 and Fig. 11 that BPGAN 

chieves higher performance than other models in multi-class clas- 

ification, where the accuracies for the dataset-A and dataset-B are 

0.34% and 53.49%, respectively. In terms of two-class classifica- 

ion tasks, most of the classification results of the proposed model 

re close to that of the real PET images, where the MCI vs. CN ac-

uracy of dataset-A is the same as real PET scans. It can be seen

rom Fig. 10 and Fig. 11 that the classification performance of PET 

mages in dataset-B (including real PET images) is inferior to that 

n dataset-A. This shows that the complexity of the data affects 

erformance, which is consistent with most AD classification al- 

orithms. The challenge in the disease diagnosis is to distinguish 

djacent stages. Since MCI is a transitional state between normal 

ging and AD, it is difficult to diagnose MCI. Because it does not 

ause abnormalities in life and social functioning, the behavior of 

atients with MCI is outside the range of normal aging changes. 

he results show that the classification accuracy of MCI is signif- 

cantly lower than that of other stages, especially AD vs. MCI and 

CI vs. CN. In classification tasks for adjacent disease stages, our 

odel achieves the best performance in the accuracy of AD vs. MCI 

n dataset-A, with an accuracy of 88.12%, which is more than 2% 

igher than that of BicycleGAN [25] . In the challenging MCI vs. CN 

lassification, BPGAN achieves the best performance on dataset-B 
10 
ith an accuracy of 63.67% compared with other methods. Over- 

ll, our generated PET images outperform those generated by other 

ethods in overall accuracy. 

.4.2. Classification accuracy of multi-modality AD diagnosis 

In the multi-modality AD diagnosis, since the alignment is pre- 

rocessed on MRI and PET scans, pixel-level fusion is performed 

n them, where simply concatenate together to form a long vector 

hat can then be used for classification. In AD classification tasks 

sing MRI and PET scans, 3D-Resnet18 is also used as the classifier 

or a fair comparison. 

We conduct experiments using the combination of real MRI 

nd synthetic PET scans as well as the combination of real paired 

RI and PET scans for multi-modality AD diagnosis. The accu- 

acies of single-modality MRI scans, single-modality PET scans, 

he combination of real MRI and PET scans, and the combina- 

ion of MRI and synthetic PET images for AD classification tasks 

re compared, as shown in Fig. 10 and Fig. 11 . As expected, since

he two modalities of medical imaging are complementary, we 

an observe that the multi-modality classification using our syn- 

hetic PET imaging achieves substantially improved performance 

or AD diagnosis compared with the single-modality classifica- 

ion using the stand-alone MRI scan. When adding our generated 

ET scans, the accuracy of multi-class classification on dataset- 

 and dat aset-B increases by about 1% and 1% separately com- 

ared with that of single-modality MRI scans. Especially in the 

D vs. CN task on dataset-B, the accuracy of multi-modal medi- 
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Fig. 8. Illustration of different maps from three planes of one subject in dataset-A, as well as the synthetic PET images and their corresponding real images. 
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al imaging with our generated PET scans reaches 85.03%, which 

ncreases about 4% than the result of single-modality MRI scans, 

s shown in Fig. 11 . These demonstrates the diagnostic useful- 

ess of generated PET scans for multi-modality diagnosis. With 

ur imputed PET scans, the multi-modality classification achieves 

lose performance for AD diagnosis compared with the multi- 

odality classification using real MRI and PET scans. In particular, 

n MCI vs. CN task on dataset-A, the multi-modality classification 

ith our generated PET scans is as accurate as the multi-modality 

lassification using real MRI and PET scans. The results indicate 

hat our proposed method is effective, and the synthesized PET 

cans can be used as supplementary data for multi-modality AD 

iagnosis. 

.4.3. ROC curve and AUC of AD diagnosis 

In two-class classification tasks, the ROC curve and AUC are fur- 

her evaluated. ROC curve and AUC represent the model prediction 

esults stably without the fluctuation of evaluation results due to 

ample imbalance, so they are common evaluation metrics for pre- 
11 
ictive accuracy. The experimental results of single-modality MRI 

cans, single-modality PET scans, the combination of real MRI and 

ynthetic PET scans, and the combination of real paired MRI and 

ET scans on dataset-A and dataset-B are shown in Fig. 12 and 

ig. 13 , respectively. By using the PET scans generated by our BP- 

AN, the AUC of MCI vs. CN classification is 0.64 on dataset-B, 

igher than other methods. We can observe that the overall per- 

ormance (in terms of AUCs) of the proposed model is superior to 

ther competitive models. 

The macro-averaged and micro-averaged ROC curves and AUC 

re further employed to evaluate the reliability of synthetic PET 

mages in the multi-class classification, as demonstrated in Fig. 14 

nd Fig. 15 , respectively. Macro-averaged and micro-averaged AUC 

alues of the combination of real MRI and synthetic PET scans 

qual the ones related to the combination of real paired MRI and 

ET scans (macro-averaged AUC = 0.94, micro-averaged AUC = 0.95) 

or AD vs. CN vs. MCI classification on dataset-A. To sum up, 

t proves that BPGAN can serve as an effective data completion 

cheme for multi-modality AD diagnosis. 
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Fig. 9. The difference maps between real and synthetic PET images on dataset-B using five methods are shown. 
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Table 7 

Quantitative comparison between our generator and the simplified generator on 

dataset-B. 

Methods MAE PSNR SSIM 

BicycleGAN [25] 0.0409 24.84 0.6503 

MCU 0.0404 24.90 0.6536 

p

t

. Discussion 

.1. Ablation analysis 

We discuss the ablation analysis in this subsection to validate 

ach key component in the proposed method. First, the perfor- 

ance of two generators, i.e., the plain U-Net and MCU, is com- 

ared to demonstrate the effectiveness of MCU architecture as a 

enerator. Quantitative comparisons in MAE, PSNR, and SSIM are 

resented in Table 6 and Table 7 . We observe that utilizing the 
able 6 

uantitative comparison between our generator and the simplified generator on 

ataset-A. 

Methods MAE PSNR SSIM 

BicycleGAN [25] 0.0348 26.19 0.6966 

MCU 0.0337 26.46 0.7088 

p

m

o

m

s

f

b

M

12 
lain U-Net as the generator results in lower performance, poten- 

ially due to the lack of learning capability of the generator. Com- 

ared with the original U-Net, generator MCU shows high perfor- 

ance with MAE of 0.0337, PSNR of 26.46, and SSIM of 0.7088 

n dataset-A. We conjectured that it is attributed to the proposed 

ultiple convolution module, which captures broader and deeper 

emantic features. And learnable interactions of cross-channel in- 

ormation encourage minimizing the inconsistency of distributions 

etween MRI and PET scans. The results show that the generator 

CU can achieve better-generated performance. 
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Fig. 10. Comparison of diagnosis results on dataset-A. 

Fig. 11. Comparison of diagnosis results on dataset-B. 
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t
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d

fi

T

t

An extensive objective function is employed in this paper to op- 

imize BPGAN, including adversarial loss, KL loss, L 1 loss, 3D GP 

oss, and SSIM loss. To investigate the contribution of each part of 

he extensive objective function to MRI-to-PET synthesis, we use 

he following three objective functions for training BPGAN, respec- 

ively. 

- w/o SSIM loss and 3D GP loss : We remove the SSIM loss and

3D GP loss, and the rest remains the same as our final objective 

function. 
13 
- w/o SSIM loss : We remove the SSIM loss, and the rest remains 

the same as our final objective function. 

- our objective function : Our proposed objective function with 

five components is utilized. 

The ablation experiment results of the objective function on 

ataset-A and dataset-B are shown in Table 8 and Table 9 . The 

rst type of extended loss is 3D GP loss. As can be seen from 

able 8 and Table 9 , the image gradient loss significantly improves 

he quality of generated PET scans in all three metrics. By introduc- 
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Fig. 12. The ROC curves in the experiments of two-class classification tasks on dataset-A. 

Fig. 13. The ROC curves in the experiments of two-class classification tasks on dataset-B. 

Fig. 14. The ROC curves in the experiments of AD vs. CN vs. MCI classification task on dataset-A. 

Table 8 

Quantitative comparisons between different objective functions on dataset-A. 

Methods MAE PSNR SSIM 

w/o SSIM loss and 3D GP loss 0.0337 26.46 0.7088 

w/o SSIM loss 0.0324 26.78 0.7247 

our objective function 0.0318 26.92 0.7294 

i

c

s

s

t

Table 9 

Quantitative comparisons between different objective functions on dataset-B. 

Methods MAE PSNR SSIM 

w/o SSIM loss and 3D GP loss 0.0404 24.90 0.6536 

w/o SSIM loss 0.0399 25.01 0.6580 

our objective function 0.0396 25.08 0.6646 

q

a

r

t

ng 3D GP loss, the edge of local tissues in generated PET scans is 

learer, and the local texture of synthetic PET images is more rea- 

onable. The second kind of extended loss is SSIM loss, which re- 

ults in a modest improvement compared to other objective func- 

ions. This is because the SSIM loss can effectively improve the 
14 
uality of synthetic images by supervising the brightness, contrast, 

nd structure information between the generated PET scans and 

eal PET scans. 

In addition, the qualitative comparison of the three objec- 

ive functions described above is provided in Fig 16 considering 
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Fig. 15. The ROC curves in the experiments of AD vs. CN vs. MCI classification task on dataset-B. 

Fig. 16. Qualitative comparison of PET images synthesized with various objective functions and corresponding difference images, as well as the real PET images in the axial 

plane. 
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enerated PET scans, ground truth PET scans, and error maps. 

t can be observed that when only considering w/o SSIM loss 

nd 3D GP loss , the edge error of brain tissues in the synthe- 

ized PET images is obvious. The main reason is that this loss 

ocuses on the macroscopic data distribution and the global in- 

ormation at the pixel level and does not consider the relation- 

hip between pixels and the structural information of the syn- 

hetic images. And the visualization results show that the syn- 

hetic PET images with our loss function are more similar to real 

ET images than the results of other objective functions. And the 

ean error per pixel in error maps is reported, which is mini- 

al with our loss function. In summary, with the proposed ob- 

ective function, BPGAN can perform stable and robust MRI-to-PET 

ynthesis. 

.2. Comparison of different data splitting strategies 

To study the impact of different data splitting strategies on the 

ET image synthesis task, we conduct experiments on the datasets 

tilizing the splits by the patient ID and random sampling, respec- 

ively. Our empirical studies show that the performance of the gen- 

rator is sensitive to the data splitting methods suitable for differ- 

nt medical scenarios. 

First, the data is partitioned randomly on MRI-PET scan-pairs 

egardless of subjects. The different scan-pairs from the same sub- 

ect are correlated. As shown in Table 4 , when the dataset is ran-

omly divided by scan-pairs, the MAE, PSNR, and SSIM of our 
15 
odel are 0.0318, 26.92, and 0.7294, respectively. We observe from 

ig. 6 that the generated PET scans are close to real PET scans 

n this case. The underlying reason is that the model relies on 

atient-level information learned in training to achieve excellent 

esults on the test set. This data partitioning method is suitable for 

atients with long-term follow-up who have historical PET imag- 

ng. Because of the prior information about individual brain struc- 

ure, the generator focuses more on mapping the structural and 

unctional information of the brain tissue associated with the dis- 

ase. 

In real medical scenarios, a new subject usually has no history 

f scans. Therefore, the impact of using the dataset split by patient 

D needs to be studied. Table 5 and Fig. 7 represent the quantita- 

ive measures and qualitative performance based on the subject- 

eparated MRI-PET scan-pairs. The second data splitting strategy is 

uitable for patients with no recorded PET scans. During the train- 

ng process, the generator not only learns the structure informa- 

ion such as the skull but also models the mapping between the 

tructural and functional information of brain tissue. Moreover, the 

ifferences among the three stages of AD exhibited by a particular 

can-pair should be understood. Relative to the generation perfor- 

ance of the first data partition strategy, the second one is some- 

hat degraded. The potential reason is that the generator is dis- 

urbed by the individual brain structure information. It is worth 

entioning that the degradation of synthesis performance under 

he second data splitting strategy is natural, which is anticipated 

y some AD diagnosis researches [62–64] . 



J. Zhang, X. He, L. Qing et al. Computer Methods and Programs in Biomedicine 217 (2022) 106676 

5

s

i

w

v

s

f

f

p

e

B

T

t

a

t

g

i

g

m

D

c

i

A

n

t

W

a

L

Q

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[  

 

[  

[  

[  

[  

[  

[  

[  

[  

[  

 

 

[  

[  

[

[  

[  

[  

[  
. Conclusion 

In this paper, we propose a novel method for brain MRI-to-PET 

ynthesis, which can be regarded as a potential scheme for miss- 

ng medical imaging complement. We design a 3D end-to-end net- 

ork BPGAN effectively synthesizes perceptually realistic and di- 

erse PET scans while preserving detailed information of brain is- 

ues. Two alternative data splitting strategies are explored to study 

urther and analyze the impact on the MRI-to-PET synthesis in dif- 

erent medical scenarios. We introduce an objective function to su- 

ervise the generator during the training process, making the gen- 

rated PET scans of higher quality. To verify the effectiveness of 

PGAN, extensive experiments are conducted on a subset of ADNI. 

he qualitative and quantitative experimental results demonstrate 

hat the proposed method can effectively generate high-quality 

nd diverse PET scans when given MRI scans, which is superior 

o other SOTA methods. Moreover, we study the contribution of 

enerated PET scans to AD classification tasks by simulating miss- 

ng data. The classification results show that reasonable PET scans 

enerated by our method can be utilized significantly for multi- 

odality AD diagnosis. 
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